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A simple proof that third-order quadrupole perturbations
of the NMR central transition of half-integral spin nuclei are zero
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Abstract

It has been known for a long time that the third-order quadrupole corrections to transitions from mz = �n/2 to mz = +n/2 are zero in
the NMR of half-integer nuclei. However, the derivation has relied on deriving the corrections to the energy levels through somewhat
laborious calculations. Only when the transitions between the levels were calculated was it revealed that the corrections to the transition
frequency were zero. In this paper, we use Liouville-space methods to work with the transitions directly. Application of a recently pub-
lished [A.D. Bain, Exact calculation, using angular momentum, of combined Zeeman and quadrupolar interactions in NMR, Mol. Phys.
101 (2003) 3163–3175] selection rule for the quadrupole coupling leads to a very simple proof that third-order corrections to the central
and other symmetrical transitions are zero. The simplicity of the proof suggests there is a fundamental symmetry involved.
� 2006 Elsevier Inc. All rights reserved.
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Many of the nuclei in the periodic table are quadrupo-
lar, i.e., they have a spin greater than 1/2 [1–5]. This means
that the different orientations of the nuclear spin can inter-
act with the field gradient at the nucleus generated by the
electrons in the molecule. When the nucleus is in a magnet-
ic field, there are then two competing influences: the Zee-
man interaction with the (lab-based) magnetic field and
the quadrupole interaction with the (molecule-based) elec-
tric field gradient. In many cases, the quadrupole interac-
tion is small enough that it can be treated with
perturbation theory. However, systems with larger and
larger quadrupole couplings are now being studied [6–13].

For half-integral nuclei, the first-order correction to the
so-called central transition (from �1/2 to +1/2) is zero, and
there are commonly used algebraic formulae for the sec-
ond-order correction [14]. Higher-order corrections to the
wavefunctions have been published [14–19], as have a num-
ber of exact solutions [10,20–25]. In practice, we find that
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second-order perturbation theory works remarkably well.
In this paper, we show that the third-order correction to
the position of the central transition is exactly zero, which
partly explains this observation. This is a well-known result
in the literature [10,11,18,19], but we present a new, clear,
and simple derivation.

This result is based on a recently published selection rule
[25]. The calculation uses the principle that the NMR tran-
sitions can be calculated directly, by setting up and diago-
nalizing the Liouvillian [26]. The Liouvillian is the
commutator with the Hamiltonian, and its matrix repre-
sentation is calculated in an operator basis. If a spherical
tensor operator basis is used, then each basis operator
has an angular momentum associated with it, correspond-
ing to the rank and the order of the spherical tensor. The
angular momentum has one quantum number giving the
total angular momentum and another which gives the z

component. We have dubbed this angular momentum
‘‘superspin’’ [27]. We showed [25] that the Liouvillian ma-
trix element of the quadrupole interaction is zero unless the
superspins of the two basis operators differed by exactly 1.
This allowed us to solve for the transitions for any strength

mailto:bain@mcmaster.ca


Communication / Journal of Magnetic Resonance 179 (2006) 308–310 309
of the quadrupolar interaction, and to observe these tran-
sitions experimentally [28]. The results showed that sec-
ond-order perturbation theory was remarkably good,
which has led us to look at higher-order terms.

There is a theorem in quantum mechanics [29] that
knowledge of the wavefunction to order n will give the
energy to order (2n + 1). In our case, we work directly with
the transitions, but the mathematics is identical. Since stan-
dard formulae for quadrupole-perturbed NMR spectra
give the operator nature of the transitions to first order
[30], the third-order corrections to the transition frequen-
cies are readily calculated.

Let Q be the quadrupole perturbation. The superspin
basis operators are eigenfunctions of the Zeeman interac-
tion [25], which is the unperturbed Liouvillian in this case.
We suppress the z component of superspin, and denote a
basis operator with total superspin N as a Liouville-space
ket |N) [27]. Let wð0Þk be the unperturbed transition and let
wð1Þk be the small first-order correction to the transition.
The unperturbed frequency, mð0Þk and its first, second, and
third-order corrections [29] (the order is given in the super-
script) are given by Eq. (1):

tð1Þk ¼ wð0Þk jQjw
ð0Þ
k

� �
;

tð2Þk ¼ wð0Þk jQjw
ð1Þ
k

� �
;

tð3Þk ¼ wð1Þk jQjw
ð1Þ
k

� �
� tð1Þk wð1Þk jw

ð1Þ
k

� �
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Similarly, the first-order correction to the transition can
be written as an expansion in terms of the eigenfunctions of
the unperturbed Liouvillian. The first-order correction to
transition wð1Þk is given by Eq. (2)

wð1Þk ¼
X

N

ðN jQjwð0Þk Þ
tð0Þk � tð0ÞN

jNÞ. ð2Þ

Before we start the full calculation, note that for the central
transition, the second term in the third-order correction is
zero, since tð1Þk ¼ 0. The central transition is unperturbed to
first order by the quadrupole interaction.

Any perturbation calculation is based on the eigenfunc-
tions of the unperturbed Liouvillian, which in this case is
the Zeeman interaction. These are the superspin kets, so
wð0Þk has a definite value of its total angular momentum.

To calculate the third-order correction, we substitute
Eq. (2) into the third equation in (1). We are concentrating
on the central transition, so the second term in (1) will be
dropped

tð3Þk ¼ wð1Þk jQjw
ð1Þ
k

� �

¼
X

M

X
N

ðM jQjwð0Þk Þ
tð0Þk � tð0ÞM

ðN jQjwð0Þk Þ
tð0Þk � tð0ÞN

M jQjNð Þ. ð3Þ

In order for the matrix element (M|Q|N) to be non-zero, M
and N must differ by exactly one unit, due to the selection
rule. If N and wð0Þk also differ by one unit, then it is impos-
sible for M and wð0Þk to do so. One of the three matrix
elements must be zero. Therefore, the expression in Eq.
(3) must vanish. This means that for the central transition,
both terms in the third-order correction will be zero. The
same argument will apply to all multiple-quantum transi-
tions from mz = �n/2 to mz = +n/2. For the single-quan-
tum satellites, the first term in Eq. (2) will be zero, but
the second will usually be finite and directly proportional
to the quadrupole coupling (the first-order term).

This simple derivation indicates a fundamental symme-
try in the quadrupole interaction, which is tied to the angu-
lar momentum properties of the system. We are pursuing
further consequences of this symmetry.

Acknowledgments

I thank Dr. Paul Ayers, Dr. Giuseppe Melacini, and Dr.
Gillian Goward for helpful discussions. Funding for this
work was provided by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).

References

[1] M. Mehring, Principles of High Resolution NMR in Solids, Springer,
Berlin, 1983.

[2] M.E. Smith, E.R.H. van Eck, Recent advances in experimental solid
state NMR methodology for half-integer spin quadrupolar nuclei,
Prog. Nucl. Magn. Reson. Spectrosc. 34 (1999) 159–201.

[3] L. Frydman, Spin-1/2 and beyond: a perspective in solid state NMR
spectroscopy, Annu. Rev. Phys. Chem. 52 (2001) 463–498.

[4] A. Goldbourt, P.K. Madhu, Multiple-quantum magic-angle spin-
ning:high-resolution solid-state NMR of half-integer spin quadrupo-
lar nuclei, Annu. Rep. NMR Spectrosc. 54 (2005) 81–153.

[5] M.J. Duer, Introduction to Solid-State NMR Spectroscopy, Black-
well, Oxford, 2004.

[6] A. Medek, J.S. Harwood, L. Frydman, Multiple-quantum magic-
angle spinning NMR: a new method for the study of quadrupolar
nuclei in solids, J. Am. Chem. Soc. 117 (1995) 12779–12787.

[7] Z.H. Gan, Satellite transition magic-angle spinning nuclear magnetic
resonance spectroscopy of half-integer quadrupolar nuclei, J. Am.
Chem. Soc. 122 (2000) 3242–3243.

[8] A.S. Lipton, J.A. Sears, P.D. Ellis, A general strategy for the NMR
observation of half-integer quadrupolar nuclei in dilute environments,
J. Magn. Reson. 151 (2001) 48–59.

[9] G. Wu, S. Dong, High-field I-127 NMR of solid Sheelite structures:
periodates revisited, Solid State Nucl. Magn. Reson. 20 (2001) 100–
107.

[10] Z. Gan, P. Srinivasan, J.R. Quine, S. Steuernagel, B. Knott, Third-
order effect in solid-state NMR of quadrupolar nuclei, Chem. Phys.
Lett. 367 (2003) 163–169.

[11] S. Wi, S.E. Ashbrook, S. Wimperis, L. Frydman, Second-order
quadrupolar-shielding effects in magic-angle spinning solid-state
nuclear magnetic resonance, J. Chem. Phys. 118 (2003) 3131–3140.

[12] C.M. Widdifield, R.W. Schurko, A solid-state K-39 and C-13 NMR
study of polymeric potassium metallocenes, J. Phys. Chem. 109 (2005)
6865–6876.

[13] G.M. Bowers, K.T. Mueller, Electric field gradient distributions
about strontium nuclei in cubic and octahedrally symmetric crystal
systems, Phys. Rev. B 71 (2005) 224112.

[14] J.F. Baugher, P.C. Taylor, T. Oja, P.J. Bray, Nuclear magnetic
resonance powder patterns in the presence of completely asymmetric
quadrupole and chemical shift effects: application to metavanadates,
J. Chem. Phys. 50 (1969) 4914–4925.

[15] G.M. Volkoff, Second order nuclear quadrupole effects in single
crystals. Part I. Theoretical, Can. J. Phys. 31 (1953) 820–836.



310 Communication / Journal of Magnetic Resonance 179 (2006) 308–310
[16] L.C. Brown, D. Williams, Quadrupolar splitting of the Al-27 and Be-9
magnetic resonances in Beryl crystals, J. Chem. Phys. 24 (1956) 751–756.

[17] R. Bersohn, Nuclear electric quadrupole interactions in solids, J.
Chem. Phys. 20 (1952) 1505–1509.

[18] J.E. Adams, L. Berry, R.R. Hewitt, Nuclear magnetic resonance of
indium metal at 4.2 K, Phys. Rev. 143 (1966) 164–167.

[19] F. Wolf, D. Kline, H.S. Story, Nb-93 and Na-23 NMR in polycrys-
talline sodium niobate, J. Chem. Phys. 53 (1970) 3538–3543.

[20] T.P. Das, E.L. Hahn, Nuclear Quadrupole Resonance Spectroscopy,
Academic Press, New York, 1958.

[21] G.M. Muha, The Zeeman effect in spin-1 systems, J. Magn. Reson. 49
(1982) 431–443.

[22] R.B. Creel, Analytic solution of 4th-degree secular equations—I = 3/
2 zeeman-quadrupole interactions and I = 7/2 pure quadrupole
interaction, J. Magn. Reson. 52 (1983) 515–517.

[23] R.B. Creel, D.A. Drabold, Exact analytical solution of the spin 3/2
combined Zeeman-quadrupole Hamiltonian, J. Mol. Struct. 111
(1983) 85–90.
[24] B.C. Sanctuary, T.K. Halstead, P.A. Osment, Multipole NMR IV:
dynamics of single spins, Mol. Phys. 49 (1983) 753–784.

[25] A.D. Bain, Exact calculation, using angular momentum, of combined
Zeeman and quadrupolar interactions in NMR, Mol. Phys. 101
(2003) 3163–3175.

[26] C.N. Banwell, H. Primas, On the analysis of high-resolution nuclear
magnetic resonance spectra I. Methods of calculating NMR spectra,
Mol. Phys. 6 (1963) 225–256.

[27] A.D. Bain, The Superspin formalism for pulse NMR, Prog. Nucl.
Magn. Reson. Spectrosc. 20 (1988) 295–315.

[28] M. Khasawneh, J.S. Hartman, A.D. Bain, Direct detection of
chlorine-35 multiple-quantum NMR transitions in a single crystal
of sodium chlorate, Mol. Phys. 102 (2004) 975–983.

[29] I. Mayer, Simple Theorems, Proofs and Derivations in Quantum
Chemistry, Kluwer, New York, 2003.

[30] P.C. Taylor, J.F. Baugher, H.M. Kriz, Magnetic resonance
spectra in polycrystalline solids, Chem. Rev. 75 (1975) 203–
240.


	A simple proof that third-order quadrupole perturbations  of the NMR central transition of half-integral spin nuclei are zero
	Acknowledgments
	References


